  Minimize test power for benchmark circuit c6288 by optimal ordering of vectors
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ISCAS-86 benchmark circuit c6288 is a 16x16 multiplier. The circuit multiplies 2 16 bit bus bit patterns. This results in a 32 bit output. The circuit contains 240 adders, of which 16 are half adders (shaded Boxes), which are inputs 0-15. These are used to provide the correct logic transitions throughout the circuit to produce an optimal 32-bit output. 
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Figure 1. ISCAS-85 C6288 16x16 Multiplier
The c6288 is known to the engineering world as a problematic circuit. Heuristic formulas state that the minimal number of input test vectors is 6. Although this has been disproved, and a more reasonable number of test vectors of 7 has been stated as the minimal number. Using Integer Linear Programming (ILP) a set of 10 test vectors has been found. These 10 vectors are shown in Figure 2. This is currently the least number of test vectors found to test circuit workability. 

Vector No.


Sixteen-bit multiplier, c6288


V1

 11011011011011011101111111111111

V2

 01101101101101101111111111111111

V3 

00000000000000000010111111111111

V4 

10110110110110111101111111111111

V5

 11111111111111111101010101010101

V6

 11111111111111110110101010101010

V7

 00111111111111011101010101010101

V8 

00111111111111011010101010101011

V9 

11101101101101100010111111111111

V10

 11011011011011001010101010101010
In wanting to reduce test power consumption of the circuit, we will use the assumption that the least number of input transitions will mean the least number of circuit power consumption. Since we already have the current least number of test vectors, the next step was to find the optimal ordering of the test vectors in which to feed them into the circuit that would provide the least number of input transitions.  To do this we used Matlab and a preinstalled Matlab function strvcat illustrated below in Figure 3.
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Figure 3. Matlab.m Source Code
The Matlab strvcat function was used to calculate the total number of transitions between and 2 test vectors. Matlab was a resourceful tool in this project and takes the number crunching iterations out of the project. The results from this Matlab experiment are illustrated in Figure 4 in an Microsoft Excell spreadsheet format. This shows the total number of Hamming Transitions between each test vector bit set.

Total No. Hamming Transitions between Vector Sets

	
	
	
	
	
	
	
	
	
	
	

	 
	V1
	V2
	V3
	V4
	V5
	V6
	V7
	V8
	V9
	V10

	V1
	 
	12
	15
	10
	11
	14
	12
	14
	14
	10

	V2
	12
	 
	13
	12
	13
	14
	14
	14
	4
	18

	V3
	15
	13
	 
	15
	26
	23
	23
	19
	11
	17

	V4
	10
	12
	15
	 
	11
	14
	12
	14
	14
	20

	V5
	11
	13
	26
	11
	 
	15
	3
	17
	15
	21

	V6
	14
	14
	23
	14
	15
	 
	18
	6
	12
	8

	V7
	12
	14
	23
	12
	3
	18
	 
	14
	18
	22

	V8
	14
	14
	19
	14
	17
	6
	14
	 
	14
	8

	V9
	14
	4
	11
	14
	15
	12
	18
	14
	 
	16

	V10
	10
	18
	17
	20
	21
	8
	22
	8
	16
	 


Figure 4 Hamming Transition Spreadsheet

Once transition distance has been established, it is next only to find the best ordering to produce the least amount of input transitions.  Two approaches where used in trying to find the optimal solution to reduce test power consumption.

We first choose a starting vector. Observe that the shortest closed tour is independent of where the search begins. If such a tour was given, we would then eliminate the longest link to get the shortest open tour, which will be our best solution. From this observation, we develop a heuristic to select the starting vector. For each vector, we find the nearest neighbor distance. For vector V1 it is 10, for V2 it is 4, for V3 it is 11, for V4 it is 10, for V5 it is 3, and so on. We select V3 because its nearest neighbor is farthest away, assuming that this will allow us to remove the longest distance from the closed tour.

Next starting with V3 and use a greedy Heuristics approach. We obtain2 solutions:
1. V3…V9…V2…V1…

2. V3…V9…V2…V4…

At this point we run into a problem that from V2 there are 2 vectors (V1,V4) with equal distance from V2. This is where you use a branch and bound tree formula to calculate the number of hamming transitions from each vector.

The follow 2 results were

1.    V3…V9…V2…V1…V4…V5…V7…V8…V6…V10
2.      V3…V9…V2…V4…V1…V10…V6…V8…V7…V5
Result 1 gives us 79 Hamming Transitions between input vectors, while result 2 gives us 78 transitions, a saving of one Hamming input transition.
By using a Traveling Sales-Person problem approach, we are able to calculate the best ordering of the pairs. Again this is a Matlab Problem. Assuming that each vector is a node, and all nodes must be visited only once, determine the optimal path.  The best way to do this is to add an 11th node, and place is a distance 0 from all other nodes. Start at the 11th node and finish at the 11th node. This is the only node that can be visited twice. This will provide us an open solution. The best solution found by Matlab was 77 Hamming Transitions, which is currently the least known number of Transitions between these 10 test vectors. Nitin Yogi provided the current solution using a genetic algorithm (GA) approach. According to Yogi, “A GA is an iterative search algorithm which uses the biological evolution properties of inheritance, crossover-mutation and selection. A GA starts with an initial solution picked at random from the solution space. In our case it will be random permutation of the TSP route. This known solution is mutated to generate P new route solutions or routes by various operations like swapping, flipping, random picking, etc. These P route solutions are evaluated for their quality using a fitness function. For our TSP problem, the fitness function will be the evaluation of the distance of the route. Based on evaluated distances, top M routes are picked with least distances. Using these M route solutions, P new solutions are again generated by mutation and the best M routes are picked from them. This process is repeated for a given number of iterations or when no improvement in the distance of the route solution is observable.”  Nitin Yogi’s solution of a 77 tansition set is given below:
V3…V9…V2…V5…V7…V4…V1…V10…V8…V6

Next we took a powerful circuit analysis tool PowerSim, and ran our test vectors in four possible orderings.
1. Original Order

2. Order giving 79 Hamming Transitions

3. Order giving 78 Hamming Transitions

4. Order giving 77 Hamming Transitions

Results using PowerSim
Circuit : c6288 (A 16 bit multiplier)

# of inputs : 32

# of outputs : 32

# of gates : 1626 

	10-Vector sequence
	# of node transitions
	Av. dynamic power (uW)
	Av. Leakage Power (uW)
	Total Av. Power (uW)
	Test power reduction (%)

	
	logic
	glitch
	total
	logic
	glitch
	total
	
	
	

	128 transitions (original)
	8246
	51426
	59672
	28
	190
	218
	36
	339
	0

	79 transitions
	6273
	40722
	46995
	21
	152
	173
	36
	209
	38

	78 transitions
	6206
	42358
	48564
	21
	157
	178
	36
	214
	37

	77 transitions
	5760
	43402
	49162
	20
	161
	181
	36
	217
	36


The technology is 90nm.    

   Rise time = 2nS

Supply voltage = 1.5V 

  Vector Period= 100nS
A more detailed account of each test ran is located in Appendix.

Conclusion

Current conclusions suggest that our original assumption of reducing the number of input transitions will result in a reduction of logic transitions to be true. Logic node transitions decrease with input transition reductions, but glitch transitions increase. In the original ordering of input test vectors, we had 8246 logic transitions, 51426 glitch transitions, and a total of 128 Hamming Transitions. We were able reduce this to a minimal of 77 Hamming Transitions, although this did not produce the least amount of test power consumption as originally assumed. The actual happy medium between logic to glitch transitions is at 79 Hamming Transitions. This produced a tested power saving of 38% over original vector ordering, and 4% power savings over least known Hamming Transition ordering. This shows that least amount of Input transitions will produce the least amount of  node logic transitions, but not necessarily the least total test power consumption.
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Appendix I
Original order 128 transitions:

Number of clock ticks 0 

max glitches 7120 caused by vector pair (3,4). logic events for this pair is 950 and events 8070

maxtime 0 maxtimecount 0

worst case delay 46 

total analysis period in nano secs 1000

number of gates 1626 

the number of events/node transitions 59672 logic events 8246 

average short circuit power in micro Watts: 0.000000 

average leakage power consumption in pico Watts: 36021072.446601

average dynamic power consumption in micro Watts : 218.144181

average logic power consumption in micro Watts : 27.972777

average glitch power consumption in micro Watts : 190.171399

total average power consumption 254.165265 

minimum leakage 34817370.760720 and vector causing 3 

maximum leakage 38264377.508312 and vector causing 4 

minimum dynamic power 207.461911 and vector pair causing (5,6) 

maximum dynamic power 300.717773 and vector pair causing (3,4) 

minimum logic power 23.632287 and vector pair causing (4,5) 

maximum logic power 33.991848 and vector pair causing (7,8) 

minimum glitch power 175.341003 and vector pair causing (5,6) 

maximum glitch power 268.366915 and vector pair causing (3,4) 

maximum Ps 0.000000 

 max total power 338.982180

Execution time : 174.469999999999998863132

Order with 79 transitions: 

Number of clock ticks 0 

max glitches 6498 caused by vector pair (3,4). logic events for this pair is 977 and events 7475

maxtime 0 maxtimecount 0

worst case delay 45 

total analysis period in nano secs 1000

number of gates 1626 

the number of events/node transitions 46995 logic events 6273 

average short circuit power in micro Watts: 0.000000 

average leakage power consumption in pico Watts: 35684763.133759

average dynamic power consumption in micro Watts : 173.342152

average logic power consumption in micro Watts : 21.418839

average glitch power consumption in micro Watts : 151.923319

total average power consumption 209.026912 

minimum leakage 35960627.428722 and vector causing 9 

maximum leakage 37250611.057971 and vector causing 5 

minimum dynamic power 70.637223 and vector pair causing (2,3) 

maximum dynamic power 279.229193 and vector pair causing (3,4) 

minimum logic power 9.622331 and vector pair causing (2,3) 

maximum logic power 33.991848 and vector pair causing (7,8) 

minimum glitch power 61.014889 and vector pair causing (2,3) 

maximum glitch power 246.393465 and vector pair causing (3,4) 

maximum Ps 0.000000 

 max total power 316.238147

Execution time : 139.289999999999992041921

Order with 78 transitions:

Number of clock ticks 0 

max glitches 6688 caused by vector pair (3,4). logic events for this pair is 926 and events 7614

maxtime 0 maxtimecount 0

worst case delay 46 

total analysis period in nano secs 1000

number of gates 1626 

the number of events/node transitions 48564 logic events 6206 

average short circuit power in micro Watts: 0.000000 

average leakage power consumption in pico Watts: 35595876.397565

average dynamic power consumption in micro Watts : 178.573391

average logic power consumption in micro Watts : 21.267871

average glitch power consumption in micro Watts : 157.305520

total average power consumption 214.169268 

minimum leakage 35765406.209975 and vector causing 9 

maximum leakage 36883931.898046 and vector causing 5 

minimum dynamic power 70.637223 and vector pair causing (2,3) 

maximum dynamic power 283.064786 and vector pair causing (3,4) 

minimum logic power 9.622331 and vector pair causing (2,3) 

maximum logic power 34.254754 and vector pair causing (8,9) 

minimum glitch power 61.014889 and vector pair causing (2,3) 

maximum glitch power 251.357764 and vector pair causing (3,4) 

maximum Ps 0.000000 

 max total power 319.902843

Execution time : 150.62999999999999545252

Order with 77 transitions:

Number of clock ticks 0 

max glitches 7140 caused by vector pair (3,4). logic events for this pair is 666 and events 7806

maxtime 0 maxtimecount 0

worst case delay 46 

total analysis period in nano secs 1000

number of gates 1626 

the number of events/node transitions 49162 logic events 5760 

average short circuit power in micro Watts: 0.000000 

average leakage power consumption in pico Watts: 35606717.574410

average dynamic power consumption in micro Watts : 181.173556

average logic power consumption in micro Watts : 20.013184

average glitch power consumption in micro Watts : 161.160366

total average power consumption 216.780274 

minimum leakage 35960627.428722 and vector causing 10 

maximum leakage 37234676.710796 and vector causing 6 

minimum dynamic power 70.637223 and vector pair causing (2,3) 

maximum dynamic power 281.871413 and vector pair causing (3,4) 

minimum logic power 9.622331 and vector pair causing (2,3) 

maximum logic power 31.048141 and vector pair causing (6,7) 

minimum glitch power 61.014889 and vector pair causing (2,3) 

maximum glitch power 259.248773 and vector pair causing (3,4) 

maximum Ps 0.000000 

 max total power 318.612962

Execution time : 142.460000000000007958079

Appendix II

Solving a Travelling Salesman Problem (TSP) using Genetic Algorithm

 By Nitin Yogi (yoginit@auburn.edu) 

Travelling Salesman Problem (TSP) [1][2] is classified as a Non-deterministic Polynomial (NP)-complete problem. Solving NP-complete problems require resources (memory and/or computational time) which grow superpolynomial with the size of the problem i.e. its complexity is O(an), where ‘a’ is a constant and ‘n’ is the size of the problem . Although solving a NP-complete problem requires exponential time, a solution to the problem can be verified in polynomial time. Hence, often a NP-complete problem is solved by trying out various candidate solutions. By using various heuristics [3] to obtain possible solutions for trials, often a close to optimal approximate solution can be achieved in polynomial time. 

Some of the approximate heuristic algorithms that can be used to solve the TSP are Nearest-neighbor algorithm [4], Genetic Algorithm [5], Simulated Annealing [6], etc. Here we describe solving the TSP using the Genetic Algorithm or GA. 

 A GA is an iterative search algorithm which uses the biological evolution properties of inheritance, crossover-mutation and selection. A GA starts with an initial solution picked at random from the solution space. In our case it will be random permutation of the TSP route. This known solution is mutated to generate P new route solutions or routes by various operations like swapping, flipping, random picking, etc. These P route solutions are evaluated for their quality using a fitness function. For our TSP problem, the fitness function will be the evaluation of the distance of the route. Based on evaluated distances, top M routes are picked with least distances. Using these M route solutions, P new solutions are again generated by mutation and the best M routes are picked from them. This process is repeated for a given number of iterations or when no improvement in the distance of the route solution is observable. Following an iteration the best route with minimum distance is stored. A pseudo-code for solving the TSP using GA is given below:

1) B: Number of bits in each test vector

2) N: Number of test vectors

3) Test_Set =N x B matrix of test vectors represented in -1/+1 format.

4) Calculate Dmat: N x N distance matrix which gives the pair-wise distances between N vectors.

Dmat = (B - (Test_Set x transpose(Test_Set)) )/2

5) Global_Min_Distance = ∞;

6) Pick a random permutation of a route for the TSP.

7) Generate P new route solutions from the initial route by mutations.

8) Dist(1:P) = Distances of the P new routes

9) Sorted_Dist= Sort(Dist(1:P))

10) Sorted_Routes = Index Numbers of Routes in the ordered list Sorted_Dist

11) Min_Distance = Sorted_Dist(1)

12) If (Global_Min_Distance > Min_Distance)
Global_Min_Distance = Min_Distance
Best_Route = Sorted_Routes(1)

13) Pick top M routes from the ordered P routes.   

14) Generate P new routes from the M routes by mutations.

15) Repeat steps 3 to 5 for R iterations or if no improvement is observed in distance of Global_Min_Distance. 

The above GA algorithm can be implemented using any programming language. We used MATLAB to solve the TSP problem using GA. A MATLAB script can easily be written to implement the GA. However MATLAB codes are readily available on the internet published by various authors to solve the TSP using GA. We downloaded and used one such code [7]. 

For the ISCAS85 benchmark circuit c6288, the number of minimum test vectors to test the circuit is found to be 10 [8]. This test set of 10 vectors was given as input to the MATLAB program which solved it as a TSP using GA. The number of iterations to solve the GA was set to 1000. The initial ordering chosen was as reported in [8] which produced a distance or number of input transitions equal to 128. After solving the TSP using GA, the number of input transitions was reduced to 77.

	Test Set
	Ordering
	No. of input transitions

	Initial Test Set (Before GA)
	[1  2  3  4  5  6  7  8  9  10]
	128

	Ordered Test Set (After GA) 
	[3  9  2  5  7  4  1  10  8  6]
	77


Table 1: Results for the test vector set of c6288 for minimum number of input transitions
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